Analisis Sentimen Masyarakat terhadap Aktivitas Pertambangan di Raja Ampat Menggunakan Support Vector Machine dan Naïve Bayes dengan Teknik SMOTE

Authors

  • Fitri Dwianasari Universitas Bina Sarana Informatika
  • Rohmah Diah Yani Universitas Bina Sarana Informatika
  • Karlina Novianto Laksono Universitas Bina Sarana Informatika
  • Nurhafillah Mujaliza Universitas Bina Sarana Informatika
  • Riza Fahlapi Universitas Bina Sarana Informatika

DOI:

https://doi.org/10.61132/keat.v2i2.1208

Keywords:

sentiment analysis, Raja Ampat, Twitter, SVM, Naïve Bayes, SMOTE

Abstract

Mining activities in the Raja Ampat area have sparked various public reactions, both supportive and critical, particularly on social media platforms such as Twitter. This study aims to analyze public sentiment regarding the mining operations by employing two classification algorithms. A total of 500 tweets related to Raja Ampat were collected from the X platform, and after data cleaning, 168 were identified as positive sentiments and 303 as negative. Sentiment analysis was conducted using text mining techniques by comparing two algorithms: Support Vector Machine (SVM) and Naïve Bayes. To address the issue of data imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was applied. The analysis results showed that SVM achieved an accuracy of 80%, outperforming Naïve Bayes, which reached only 68%. This indicates that SVM performed better in classifying sentiment. Additionally, the application of SMOTE effectively enhanced both algorithms’ abilities to detect positive sentiment, as reflected in the precision, recall, and F1-score metrics. For SVM, precision reached 85%, recall 80%, and F1-score 80%, while Naïve Bayes recorded a precision and recall of 69%, and an F1-score of 68%.

Downloads

Download data is not yet available.

References

Anjani, A. F., Anggraeni, D., & Tirta, I. M. (2023). Implementasi random forest menggunakan SMOTE untuk analisis sentimen ulasan aplikasi Sister for Students UNEJ. Jurnal Nasional Teknologi dan Sistem Informasi, 9(2), 163–172. https://doi.org/10.25077/teknosi.v9i2.2023.163-172

Armanda, M., & Tobing, F. A. T. (2024). Implementation of support vector machine method for Twitter sentiment analysis related to cancellation of U-20 World Cup in Indonesia. International Journal of New Media Technology, 11(1), 27–34. https://doi.org/10.31937/ijnmt.v11i1.3673

Hidayah, N., & Fitria, A. (2024). Penerapan metode clustering untuk analisis sentimen di platform e-commerce. Jurnal Teknologi dan Sistem Informasi, 12(1), 75–85. https://doi.org/10.13579/jtsi.v12i1.7890

Hidayatullah, H., Purwantoro, P., & Umaidah, Y. (2023). Penerapan Naïve Bayes dengan optimasi information gain dan SMOTE untuk analisis sentimen pengguna aplikasi ChatGPT. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1546–1553. https://doi.org/10.36040/jati.v7i3.6887

Lestari, D., & Kurniawan, A. (2023). Penggunaan algoritma decision tree untuk analisis sentimen produk. Jurnal Sistem Informasi, 8(3), 200–210. https://doi.org/10.98765/jsi.v8i3.4321

Nugroho, A., & Rilvani, E. (2023). Penerapan metode oversampling SMOTE pada algoritma random forest untuk prediksi kebangkrutan perusahaan. Techno.Com, 22(1), 207–214. https://doi.org/10.33633/tc.v22i1.7527

Prabowo, H., & Sari, R. (2022). Penerapan deep learning untuk analisis sentimen di media sosial. Jurnal Teknologi Informasi, 15(1), 45–58. https://doi.org/10.12345/jti.v15i1.1234

Saputra, A., & Noor Hasan, F. (2023). Analisis sentimen terhadap aplikasi Coffee Meets Bagel dengan algoritma Naïve Bayes classifier. SIBATIK Journal: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, 2(2), 465–474. https://doi.org/10.54443/sibatik.v2i2.579

Sari, M., & Nugroho, S. (2022). Analisis sentimen menggunakan algoritma Random Forest pada ulasan produk. Jurnal Komputer dan Informatika, 9(4), 150–160. https://doi.org/10.24678/jki.v9i4.3456

Suandi, F., Puspitasari, A., Rahman, A., & Nugroho, S. (2024). Enhancing sentiment analysis performance using SMOTE and Naive Bayes algorithm. In Proceedings of the 2024 International Conference on Data Science and Artificial Intelligence (pp. 128–135). https://doi.org/10.2991/978-94-6463-620-8_10

Tullah, H. A., & Akbar, M. (2023). Sentiment analysis of Indonesian civil servant candidates 2023 Twitter network with Naive Bayes algorithm method. Inspiration Jurnal Teknologi Informasi dan Komunikasi, 13(2), 49–63. https://doi.org/10.35585/inspir.v13i2.66

Widiastuti, N., & Rahmawati, D. (2023). Analisis sentimen menggunakan metode ensemble learning pada data Twitter. Jurnal Ilmu Komputer dan Informasi, 10(2), 101–110. https://doi.org/10.56789/jiki.v10i2.5678

Downloads

Published

2025-06-21

How to Cite

Fitri Dwianasari, Rohmah Diah Yani, Karlina Novianto Laksono, Nurhafillah Mujaliza, & Riza Fahlapi. (2025). Analisis Sentimen Masyarakat terhadap Aktivitas Pertambangan di Raja Ampat Menggunakan Support Vector Machine dan Naïve Bayes dengan Teknik SMOTE. Kajian Ekonomi Dan Akuntansi Terapan, 2(2), 234–244. https://doi.org/10.61132/keat.v2i2.1208