Model Peramalan Harga Karet di Kabupaten Lahat Provinsi Sumatera Selatan tahun 2019-2023
DOI:
https://doi.org/10.61132/keat.v2i4.1804Keywords:
Arima, Forecasting, Fluctuations, Prices, RubberAbstract
Rubber prices experience significant and prolonged fluctuations, which impact farmer incomes and management decisions. Understanding historical patterns and price predictions is considered crucial for production planning, marketing, and farmer protection policies. This study aims to identify the characteristics of rubber price time series in Lahat Regency and develop a reliable forecasting model to support short- to medium-term decision-making. This study uses secondary data on monthly average producer prices for the period January 2019–December 2023. The analysis includes the Augmented Dickey–Fuller stationarity test to determine the need for transformation, differencing, and/or logarithmic transformation when necessary, identification of autocorrelation patterns using ACF/PACF, model estimation on the processed data, and evaluation of residual diagnostics (Ljung–Box, normality test) and forecasting accuracy metrics (RMSE, MAE, MAPE, Theil). The level data shows non-stationarity and becomes stationary after the first differencing; The model on log-transformed data had significant parameters and higher explanatory power than the model on de-differenced data, with RMSE and MAPE values within a reasonable range. Forecast confidence intervals widened at longer time horizons, indicating increased projection uncertainty. Conclusion: Validated forecasts can inform farmers and policymakers to manage price risk and design market interventions.
Downloads
References
Ali, S., Waqas, H., & Ahmad, N. (2015). Analyzing the dynamics of energy consumption, liberalization, financial development, poverty and carbon emissions in Pakistan. Jurnal Applied Environmental Biological Sciences.
Ardhiyan, S. (2013). Faktor-faktor yang mempengaruhi konversi tanaman karet menjadi kelapa sawit [Skripsi, Program Studi Agribisnis Fakultas Pertanian].
Aulia Azhar, P., Arya Pratama, M., & Fitriani, R. (2024). Prediksi harga mobil Audi bekas menggunakan model regresi linear dengan framework Streamlit. Journal of Technology and Informatics (JoTI), 6(1), 22–28. https://doi.org/10.37802/joti.v6i1.763
Badan Pusat Statistik. (2025). Republik Indonesia dalam Angka 2025. Author.
Ega Nasywa, Effendi, R., Subroto, W., Mardiani, F., Nadilla, D. F., & Rochgiyanti. (2025). Perkebunan karet dan dinamika ekonomi petani: Antara harapan dan kenyataan. Entita: Jurnal Pendidikan Ilmu Pengetahuan Sosial dan Ilmu-Ilmu Sosial, 7(1), 77–96. https://doi.org/10.19105/ejpis.v7i1.18411
Gempati, A., Fradani, F. A. R., Ibrahim, R. M., Astuti, T. K., & Prasetyo, Y. R. (2025). Peramalan data IHSG 2021–2025 di Indonesia dengan time series modeling autoregressive integrated moving average (ARIMA). Jurnal Ilmiah Ekonomi dan Manajemen, 3(5), 225–234. https://doi.org/10.61722/jiem.v3i5.4650
Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). McGraw-Hill.
Ismu, R. (2017). Pemanfaatan minyak biji karet (Havea brasiliensis) sebagai bahan baku biodiesel pada variasi suhu transesterifikasi dan rasio (methanol/minyak) pada waktu 120 menit [Skripsi, Universitas Negeri Yogyakarta].
Junaedi, L., Damastuti, N., Latipah, & Widodo, A. (2025). Penerapan metode seasonal ARIMA (SARIMA) untuk peramalan penjualan barang dengan pola musiman tahunan. JISEM (Jurnal Informatika, Sistem Informasi, dan Elektro Modern), 1(1), 38–48.
Maryam, U., Somayasa, W., Ruslan, R., La Gubu, L. G., & Jufra, J. (2022). Estimasi parameter dan uji goodness of fit untuk data biner berpasangan. Jurnal Matematika Komputasi dan Statistika, 2(1), 1–12. https://doi.org/10.33772/jmks.v2i1.7
Pamungkas, M. B., & Wibowo, A. (2019). Aplikasi metode ARIMA Box-Jenkins untuk meramalkan kasus DBD di Provinsi Jawa Timur. The Indonesian Journal of Public Health, 13(2), 181–194.
Purwaningrat, L., Novianti, T., & Dermoredjo, S. (2020). Dampak kebijakan International Tripartite Rubber Council (ITRC) terhadap kesejahteraan petani karet Indonesia. Jurnal Ekonomi Pertanian dan Agribisnis, 4(2), 411–424. https://doi.org/10.21776/ub.jepa.2020.004.02.18
Ramli, N., Azam, A. H. M., Nor, A. H. S. M., & Sarmidi, T. (2022). Spillover of rubber price volatility in ASEAN-3 countries. Journal of Rubber Research, 25(4), 251–263. https://doi.org/10.1007/s42464-022-00181-4
Reuters. (2025). Global rubber shortfall looms in 2025 on stagnant output, association says.
Riyono, A., & Juliansyah, H. (2018). Pengaruh produksi, luas lahan dan tingkat pendidikan terhadap pendapatan petani karet di Desa Bukit Hagu Kecamatan Lhoksukon Kabupaten Aceh Utara. Jurnal Ekonomi Pertanian Unimal, 1(2), 65–72. https://doi.org/10.29103/jepu.v1i2.522
Sarah, A. S., Siahaan, L. N., & Nazwa, S. (2025). Analisis faktor-faktor yang memengaruhi indeks pembangunan manusia di Jawa Tengah menggunakan regresi log-linier. Jurnal Penelitian Ilmu-Ilmu Sosial, 2(12).
Siregar, S. P. (2024). The effect of rubber prices and production on the income of rubber farmers in North Padang Lawas Regency. Jurnal Pamator, 17(3).
Sugiyono. (2022). Metode penelitian kuantitatif, kualitatif dan R&D. Alfabeta.
Wahyuni, E. (2021). Penerapan model time series dalam peramalan harga komoditas hortikultura di Indonesia. Jurnal Ekonomi Pertanian dan Agribisnis, 5(2), 134–145.
Wardoni, I., Putri, D. D., & Lestari, S. (2024). Analisis efisiensi rantai pasok lateks dengan metode data envelopment analysis (DEA) di PT Perkebunan Nusantara IX Kebun Krumput Banyumas. Jurnal Pertanian Agros, 26(1), 5327–5338.
Yuningtyas, C., Hakim, D., & Novianti, T. (2020). Threshold transmisi harga karet alam Indonesia dengan pasar internasional Singapura. Jurnal Ekonomi Pertanian dan Agribisnis, 4(3), 623–633. https://doi.org/10.21776/ub.jepa.2020.004.03.16
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kajian Ekonomi dan Akuntansi Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


