Peramalan Harga Daging Sapi di Kota Palembang dan di Tingkat Nasional Tahun 2019-2024 Menggunakan Metode Arima

Authors

  • Tri Arrizki Universitas Bengkulu
  • Reflis Reflis Universitas Bengkulu
  • Rama Fajarwanto Universitas Bengkulu
  • Rina Hikmawati Universitas Bengkulu
  • Desi Karlina Universitas Bengkulu

DOI:

https://doi.org/10.61132/pajamkeu.v2i6.1818

Keywords:

ARIMA, Beef Prices, Price Forecasting, Stationarity, Time Series Analysis

Abstract

This study aims to forecast beef prices in Palembang City and at the national level in Indonesia using the Autoregressive Integrated Moving Average (ARIMA) method. The data used are the monthly average beef prices for the period January 2019 to December 2024. The analysis involves stationarity tests using Augmented Dickey-Fuller (ADF), model identification through Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots, parameter estimation with Maximum Likelihood Estimation (MLE), and residual diagnostics with the Ljung-Box and Jarque-Bera tests. The results show that beef prices at both regional levels are not stationary at the level but become stationary after the first differencing (I(1)). The best ARIMA models obtained are ARIMA(0,1,1) for Palembang City and ARIMA(1,1,0) for the national level. Both models successfully predict price fluctuations with a low error rate and show a moderate price increase trend. These findings provide practical implications for price stabilization policy making and beef-related business planning. The forecast results state that beef prices in Palembang City and nationally are predicted to tend to rise in 2025 from January to December.

 

Downloads

Download data is not yet available.

References

Astuti, D., Hartanti, D. Y., Nurhayanti, S. T., & Fransiska, H. (2022). Clustering and forecasting of Covid-19 data in Indonesia. Jurnal Matematika, Statistika dan Komputasi, 18(3), 324–335. https://doi.org/10.20956/j.v18i3.18882

Badan Pusat Statistik. (2025). Republik Indonesia dalam Angka 2025. BPS.

Center for Indonesian Policy Studies. (2025). Harga daging sapi naik jelang Ramadan: Efisiensi kuota impor dipertanyakan. Food Monitor Updates.

Destiarni, R. P. (2018). Peramalan harga telur ayam ras pada hari besar keagamaan di pasar Jawa Timur. Berkala Ilmiah AGRIDEVINA, 7(1). https://doi.org/10.33005/adv.v7i1.1131

Erdianto, M. A. (2023). Perancangan model peramalan jangka pendek harga komoditas pertanian di Indonesia menggunakan machine learning. Jurnal KLIK, 3(4), 338–346.

EViews. (2021). Quantitative Micro Software, LLC – Example of ARIMA forecasting and evaluation in EViews.

Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). McGraw-Hill.

Kementerian Pertanian Republik Indonesia. (2023). Outlook Komoditas Peternakan: Daging Sapi 2023. Pusat Data dan Sistem Informasi Pertanian.

Kotler, P., & Armstrong, G. (2018). Principles of marketing (17th ed.). Prentice Hall.

Lubis, D. I. D., & Hidayat, R. (2017). Pengaruh citra merek dan harga terhadap keputusan pembelian pada Sekolah Tinggi Ilmu Manajemen Sukma Medan. Jurnal ILMAN (Jurnal Ilmu Manajemen), 5(1), 15–24.

Mao, L., Huang, Y., Zhang, X., Li, S., & Huang, X. (2022). ARIMA model forecasting analysis of the prices of multiple vegetables under the impact of the COVID-19. PLOS ONE, 17(7), e0271594. https://doi.org/10.1371/journal.pone.0271594

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. Wiley.

Muda, L., Lestari, D. I., Aprilia, F., Saragih, L. K., & Miftahussa’idah, M. I. (2025). Pengelolaan manajemen risiko dalam sektor agribisnis. Jurnal Intelek Insan Cendikia, 2(3), 5171–5186.

Najmi, A., Firmansyah, F., & Yurleni, Y. (2025). Analisis integrasi pasar pada tingkat produsen daging sapi Provinsi Jambi dengan beberapa provinsi sentra ternak sapi di Sumatera. JAS (Jurnal Agri Sains), 9(1), 1–9. https://doi.org/10.36355/jas.v9i1.1759

Ondang, M. R., Moningkey, E. R., & Maramis, G. D. (2025). Forecasting harga kebutuhan pokok dengan pemodelan autoregressive integrated moving average pada Kabupaten Minahasa Selatan. REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, 9(2), 741–753.

Qodriyatun, S. N. (2022). Stabilisasi pasokan dan harga daging sapi di tengah pandemi. Info Singkat P3DI DPR RI, 13–16.

Rusminto, M. Z., Adi Wibowo, S., & Santi Wahyuni, F. (2024). Peramalan harga saham menggunakan metode ARIMA (Autoregressive Integrated Moving Average) time series. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1263–1270. https://doi.org/10.36040/jati.v8i2.9089

Sabroso, L. M., & Bugarin, J. B. (2023). Price forecasting of fully dressed chicken in the Philippines. European Journal of Economic and Financial Research, 7(2). https://doi.org/10.46827/ejefr.v7i2.1459

Salsabela, A. A. (2021). ARIMA model for forecasting using EViews. Medium.

Slamet, H., Ahmad Haris, Ischak, R., Wulandari, S. A., & Brillyantina, S. (2022). Komparasi metode peramalan harga daging ayam broiler di Kabupaten Banyuwangi menggunakan jaringan syaraf tiruan backpropagation dan model multiplicative Holt-Winters. Paradigma Agribisnis, 4(2), 54–68. https://doi.org/10.33603/jpa.v4i2.6788

Wati, P., Sari, N., Hotimah, M., & Putri, N. (2022). Analisis proyeksi pangan dari sisi harga komoditas daging sapi sebagai bentuk antisipasi terjadinya kenaikan harga di Provinsi Kepulauan Bangka Belitung. Fraction: Jurnal Teori dan Terapan Matematika, 2(1), 32–37. https://doi.org/10.33019/fraction.v1i2.25

Downloads

Published

2025-12-12