Estimasi Peramalan Volatilitas Return Saham Perusahaan Sektor Energi Pada Indeks Saham Syariah Indonesia (ISSI)
DOI:
https://doi.org/10.61132/jiesa.v2i1.826Keywords:
Indonesia Sharia Stock Index, Forecasting, Stock Return, VolatilityAbstract
This study aims to determine the forecasting of stock return volatility of energy companies listed on the Indonesian Sharia Stock Index (ISSI) using the ARCH/GARCH method. This study uses purposive sampling method and uses secondary data in the form of daily stock returns from January 2022 to June 2024 on 10 selected stocks. Data processing is done using Stata software. The results showed that of the 10 selected stocks, only 6 stocks, namely BYAN, ADRO, GEMS, PTBA, AKRA, and BSSR, were suitable for analysis using the ARCH/GARCH model. Meanwhile, PGAS, ITMG, PTRO, and HRUM do not show ARCH effect or do not contain heteroscedasticity. Statistical evaluation of volatility prediction shows that the selected models provide good predictions. Among the six stocks analyzed, ADRO, PTBA, and BSSR show high volatility, while BYAN, GEMS, and AKRA show low volatility. Therefore, investors should consider investment risk when evaluating stocks with different levels of volatility.
Downloads
References
Adnyana, M. (2020). Manajemen investasi dan portofolio. Lembaga Penerbitan Universitas Nasional (LPU-UNAS).
Arisandi, M. (2014). Pengaruh ROA, DER, CR, inflasi, dan kurs terhadap return saham (Studi kasus industri makanan dan minuman yang terdaftar di BEI periode 2008-2012). Jurnal Dinamika Manajemen, 2(1).
Bhowmik, R., & Wang, S. (2020, May). Stock market volatility and return analysis: A systematic literature review. Entropy, 22(5).
Bodie, Z., Kane, A., & Marcus, A. J. (2018). Essentials of investment. McGraw-Hill.
Bollerslev, T. (1986, February). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327.
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis: Forecasting and control (5th ed.). John Wiley & Sons.
Eliyawati, W. Y., Hidayat, R. R., & Azizah, D. F. (2014, January). Penerapan model GARCH (Generalized Autoregressive Conditional Heteroscedasticity) untuk menguji pasar modal efisien di Indonesia (Studi pada harga penutupan (closing price) indeks saham LQ 45 periode 2009-2011). Jurnal Administrasi Bisnis (JAB), 7(2).
Engle, R. F. (1982, July). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1008.
Gohain. (2021). Evaluation of Theil’s U: A naïve forecast application. Quantum Journal of Engineering, Science and Technology, 26-31.
Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). McGraw-Hill.
Jogiyanto. (2022). Portofolio dan analisis investasi: Pendekatan modul (Edisi 2). BPFE.
Margireta, I. A., & Khoiriawati, N. (2022). Penerapan pelaporan sosial pada perusahaan sektor energi yang sudah terdaftar di Bursa Efek Indonesia. Fair Value: Jurnal Ilmiah Akuntansi dan Keuangan, 4(12).
Mehdiyev, N., Enkec, D., Fettkea, P., & Loosa, P. (2016). Evaluating forecasting methods by considering different accuracy measures. Procedia Computer Science, 95, 264-271.
Romli, H., Wulandari, M. F., & Pratiwi, T. S. (2017, December). Faktor-faktor yang mempengaruhi volatilitas harga saham pada PT Waskita Karya Tbk. Jurnal Ilmiah Ekonomi Global Masa Kini, 8(1).
Rusyida, W. Y. (2022). Teknik peramalan: Metode ARIMA dan Holt Winter. Penerbit NEM.
Sugiyono. (2013). Metode penelitian kuantitatif, kualitatif, dan RD. Alfabeta.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Inovasi Ekonomi Syariah dan Akuntansi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.